BIO MASS

Thursday, April 26, 2007

Detoxification of a toxid variety of Jatropha curcas using heat and chemical treatments

Eroarome M. Aregheore, K. Becker, H. P. S. Makkar: Detoxification of a toxid variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. In: S. Pac. J. Nat. Sci.. 21, 2003, p. 50 - 56 [Jatropha curcas meal, phorbolester, lectin, food intake, growth rate, PER, TI, rat.].


Makkar, Dr. Harinder P.S., International Atomic Energy Agency, India Field of research: Animal production Host: Prof. Dr. Klaus Becker Universität Hohenheim
E. M. Aregheore, K. Becker, Harinder P.S. Makkar: Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. In: S. Pac. J. Nat. Sci. 21, 2003, p. 50 - 56 [Jatropha curcar meal, phorbolester, lectin, food intake, growth rate, PER, TI, rat.].

http://www.usp.ac.fj/index.php?id=4789 에 논문의 내용이 있음.





Products from little researched plants as aquaculture feed ingredients
George Francis1, Harinder P. S. Makkar2 and Klaus Becker1
http://www.fao.org/DOCREP/ARTICLE/AGRIPPA/551_EN.HTM1Department of Animal Nutrition and Aquaculture, Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim (480), D 70593 Stuttgart, Germany.
2 Animal Production and Health Section,
International Atomic Energy Agency, P.O. Box 100,
Wagramerstr. 5, A-1400 Vienna, Austria.
Corresponding author: Prof. Dr. Klaus Becker, Department of Animal Nutrition and Aquaculture, Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim (480), D 70593 Stuttgart, Germany.
Tel. 0049 711 4593158, Fax. 0049 711 4593702, email - kbecker@uni-hohenheim.de
Keywords: Aquaculture feeds, plant-derived ingredients, less researched plants, nutritional quality, antinutritional factors
Abstract
The production of aquaculture feeds is expected to rise from the current level of about 13 million metric tonnes (mmt) to about 30 mmt in 2010. It is estimated that a minimum of 3 mmt of fishmeal equivalent, alternative protein sources will be required in the aquaculture industry yearly by the year 2010. The selection of plant-derived, protein sources for use as animal feeds should take human food security interests into account. It would be highly desirable if products from plants that can grow on degraded soil and require lower external energy subsidies could be used. Four examples of such plants, Jatropha curcas, Moringa oleifera, Sesbania spp. and Mucuna pruriens, are discussed here. These plant species are capable of growing on degraded lands, under stressful environmental conditions, and still sustain a reasonable production of nutrient -rich products with potential as fish feed ingredients. Alongside their potential in the production of feed ingredients, these species can help reclamation of degraded areas. Furthermore, their development may be aided by and profit from the national, international and private funding that is being channelled into wasteland reclamation. In addition to the nutritional quality of these plant products, the presence and detoxification procedures for the various anti-nutrients are also discussed.
Introduction:
As the World's human population continues to expand beyond 6 billion, its reliance on farmed fish production as an important source of protein will also increase (Naylor et al., 2000). Projections of world fishery production in 2010 range between 107 and 144 million tonnes (FAO, 2000). Most of the increase in fish production is expected to come from aquaculture, which is currently the fastest growing food production sector of the world. By the year 2030, aquaculture will dominate fish supplies and more than half of the fish consumed is likely to originate from this sector (FAO, 2000). The projected total production of feeds for aquaculture in the year 2010 range from 25 million metric tonnes (mmt; Tacon and Forster, 2001) to 32.6 mmt (IFOMA, 2000) against an approximate production estimate of about 13 mmt in the year 2000. Requirements for aquaculture feeds are likely to be further increased by an increasing trend towards the intensification of farmed production of omnivorous species in Asian countries, particularly China.
The proportion of global fishmeal production used in fish feeds has increased from 10 to 35 per cent in the last fifteen years (Hardy, 2000). Predictions of fishmeal needs for aquaculture feeds in 2010 are 2.8 mmt, approximately 44 per cent of the ten-year average global fishmeal production of 6.5 mmt. This is in spite of the predicted decrease from current levels of the percentage of fishmeal included in the feed of all, major aquaculture species. Hardy (2000) estimates that this amount of fishmeal would be approximately 1.3 mmt less than that required had there been no decline in fishmeal use in fish feeds. At least this amount of fishmeal equivalent alternative protein sources (to the order of approximately 3 mmt) would be required in the aquaculture industry yearly by the year 2010.
The need to identify appropriate, new sources of protein is therefore imperative. It is highly desirable that the selected protein sources do not conflict with human food security interests. It is worth mentioning in this context that fish that could form human food are converted into fishmeal for use in animal feeds in countries such as Peru for economic reasons. The importance of the development of non-human-food grade feed resources whose growth can cope with the projected and desired fast growth of the sector has been stressed (Tacon and Forster, 2001). Recent outbreaks of diseases such as BSE in livestock, arguably caused by feeding animal products to animals that do not normally consume them, have cast doubts regarding the suitability of feeding animal-derived proteins to non-carnivorous species. Plants therefore become the preferred sources of protein for these species. There have been a number of efforts in the past decades to test the suitability of a number of plant-derived protein sources for various, popular aquaculture species. Many of these have concentrated on species such as soybean, rapeseed (canola) meal, sunflower seed meal, cottonseed meal, peanut meal, wheat and corn gluten. Most of these plants require environmental and soil conditions and energy subsidies that restrict the scope for increasing their production. With the prospects of increasing direct human demand for nutrients derived from these sources they could not be expected to contribute greatly towards satisfying demands from new sources such as the aquaculture feed industry.
There is, therefore, a need to examine other plants that can grow on degraded soil and require lower external energy subsidies. Alongside their potential in the production of feed ingredients, these species can help reclamation of degraded areas. Furthermore, their development may be aided by the national, international and private funding that is being channelled into wasteland reclamation. According to World Resources Institute (WRI) estimates, there were about 1.2 billion hectares of eroded land (11 per cent of the Earth's vegetated surface) in 1990. Since 1990, an additional 5 to 6 million ha per annum are lost to severe soil degradation, again according to WRI estimates. Conventional, agricultural production would eventually become nonviable in a large proportion of these lands. The International Food Policy Research Institute (IFPRI) data indicate that soil degradation has already significantly lowered the productivity of 16 per cent of farm-land, world-wide. Several, hardy plant species can assist in reclamation of eroded land by increasing the organic matter content of the soil and acting as carbon sinks and dust traps. Alley-cropping with these plants would enable inter-cropping with annuals such as vegetables a few years after initial planting. These multipurpose plants and their products, taking their availability and potential for growth into account, could be considered as protein sources in feeds after adequate treatment. Reclamation of eroded and unproductive land would be an additional benefit. Asia, which accounts for more than 90 per cent of global aquaculture production of global, aquaculture production, is estimated to have 11 per cent wasteland, 15 per cent lightly or moderately degraded and 3 per cent strongly or extremely degraded land according to UN figures. China and India, that together account for about 75 per cent of the total aquaculture production, are listed to beindicated as being severely affected by land degradation. There exist therefore possibilities for regional and local integration of feed ingredient production from wasteland and their use in aquaculture production.
Plants that are capable of resisting adverse soil and climatic conditions often contain high levels of anti-nutritional, toxic principles that keep herbivores at bay. Utilisation of these plants as animal or fish feeds would therefore depend, not only on their nutritional content, but also the presence and level of various toxic principles and methods of detoxification. The purpose of this paper, therefore, is to highlight lesser-utilised and researched plant species capable of growing on degraded lands under stressful environmental conditions and still sustaining a reasonable production of nutrient rich products having potential as fish feed ingredients. The levels of and detoxification procedures for the various anti-nutrients present are also discussed.
Prospective plant species
1. Jatropha curcas
General information
Jatropha curcas (L) or physic nut is a multipurpose and drought-resistant, large shrub or small tree. Although a native of tropical America, it now thrives throughout Africa and Asia. It grows in a number of climatic zones in tropical and sub-tropical regions of the world and can be grown in areas of low rainfall. Jatropha is easy to establish, grows relatively quickly and is hardy. A perceived advantage of Jatropha is its ability to grow on marginal land and to reclaim and restore eroded areas. Various parts of the plant hold potential for use as animal feed, inclusion in medicinal preparations and as a source of honey. If grown on barren lands, Jatropha could add to the removal of carbon from the atmosphere, and the build up of soil carbon.
Seed production ranges from about 0.1 t / ha / year to over 8 t / ha / year (Heller, 1996). The seed yield reaches a peak after about five years of growth. This range in production may be attributable to variation in rainfall and soil nutrient status. The plant takes between four and five years to yield when cultivated on poor soil, with no irrigation and planted in full sunlight but much less time is required under optimal rainfall and soil conditions. Once established, plantations yield for between 30 and 35 years. Jatropha can also be grown as a hedge plant. Henning (1996) estimated seed production of 0.8 - 1.0 kg of seed per square meter from Jatropha hedges in Mali, equivalent to between 2.5 t / ha / year and 3.5 t / ha / year respectively.
Nutritional value of the seeds
Jatropha has been investigated mainly as a potential source of oil that has been recognised as an adequate substitute motor fuel. The seed kernel of the plant contains about 60 per cent oil. The seed cake remaining after oil extraction is an excellent source of plant nutrients (Table 1). However the presence of high levels of antinutrients (Table 2) prevents their use in animal feeding. Phorbolesters (phorbol-12-myristate 13-acetate) have been identified as the major toxic principle in Jatropha (Makkar and Becker, 1997a). Varieties of Jatropha plants where phorbolesters are almost absent have been identified in Mexico. These offer promise for inclusion of products from these plants in animal and fish diets. The nutritional composition of the extracted seed meal from the non-toxic variety (from Veracruz, Mexico) appears to be similar or even superior to the toxic variety (from Cape Verde and Mexico) (Table 1). Non-protein nitrogen formed only 7.8 - 9.0 per cent of the total nitrogen in the Jatropha meals suggesting the presence of high levels (~90 per cent) of true protein (Makkar et al., 1998).
The level of essential amino acids of the defatted, kernel meal of the non-toxic variety (see Table 10) are higher than that of FAO reference protein except for lysine (Makkar and Becker, 1999a). A comparison between Jatropha meal and soybean reveals an almost similar pattern for all essential amino acids except lysine and sulphur-amino acids; these are lower and higher respectively in Jatropha meals.
In vitro, digestible organic matter and metabolisable energy of the non-toxic Jatropha seed meal (77.3 per cent and 10.7 MJ/kg DM respectively) were lower than those of soybean meal (87.9 and 13.3 MJ/kg DM respectively), but comparable with those of cottonseed, rapeseed and sunflower meal (Makkar and Becker, 1999a). The pepsin soluble fraction of the total nitrogen has been reported to be 94 - 95 per cent (Aderibigde et al., 1997). The seed meal of the non-toxic Jatropha could thus be regarded as having high potential for use as a feed supplement for fish and monogastrics.
Antinutrients
Even though the Mexican, non-toxic varieties lack the most potent toxin, phorbol esters, other antinutrients such as trypsin inhibitor, lectin and phytate are present in significant amounts (Table 2), and their levels are similar to those in the toxic varieties.
Moist heating of seeds almost completely inactivated trypsin inhibitor activity and decreased lectin activity (Makkar and Becker, 1999a). In addition to reducing heat-labile, antinutritional factors such as trypsin inhibitors and lectins, heat treatment should also increase protein digestibility. Furthermore, moist heating should render the seed cake from the non-toxic variety usable in fish diet. On the other hand, heat treatment followed by aqueous methanol extraction could result in elimination of most of the antinutrients and toxins from the toxic variety. The meal treated in this manner has been found to be innocuous to rats (Makkar and Becker, 1997b).
Fish feeding trials
Carp (Cyprinus carpio) fed diets containing the non-toxic, fat free Jatropha kernel meal (23 per cent by weight of the dietfeed) showed lower body weight gains than fish fed a control diet based on fishmeal. However, a diet containing the same level of Jatropha meal heated for 15 min (at 121°C and 66 per cent moisture) and still containing appreciable amounts of trypsin inhibitors and lectins was found to yield the best performance (243 per cent weight gain compared to 303 per cent observed with the control treatment) among Jatropha containing feeds (Makkar and Becker, 1999b). It is possible that reduction of the amount of inclusion level (to around 15 per cent by weight) in feeds, extraction with water (to remove residual antinutrients and improve acceptability by the fish) and supplementation with lysine containing ingredients may facilitate better utilisation of this ingredient by fish although, more research will be required to confirm these suppositions.
2. Moringa oleifera
General information
Moringa oleifera Lam. or 'horse-radish' tree (so-called because of the taste of a condiment prepared from the roots) or 'drumstick' tree (arising from the shape of the pods), or `never-die-tree' is a multipurpose tree that thrives in both tropical and sub-tropical conditions. It is native to the sub-Himalayan regions of north-west India. This tree is now indigenous to many countries in Africa, Arabia, South East Asia, the Pacific and Caribbean Islands and South America, producing flowers and fruits continuously. Originally considered a tree of hot, semi-arid regions with annual rainfall 250 - 1500 mm, it has also been found to be well adapted to hot, humid, wet conditions with annual rainfall in excess of 3000 mm. Moringa can grow in a variety of soil conditions, from well drained sandy or loamy soils (which the plants prefer) to heavier clay soils. The tree is reported to be tolerant of light frosts and can be established in slightly alkaline soils up to pH 9. Currently, the young leaves and pods are used as vegetables, the oil extracted from kernels for culinary and industrial purposes, the water extract of the kernels as a water purifying agent, the seed cake as fertiliser, and various parts of the tree in traditional medicine (Foidl et al., 2001).
The tree is fast growing and high yielding (an estimated 3.0 t seed / ha compared to average yields of sunflower and groundnut of 2.0 and 0.5 t / ha respectively). It can also be planted for forage production under intensive farming conditions. Initial trials in Nicaragua have shown a high biomass production of up to 120 tons dry matter / ha / yr, in eight cuttings after planting 1 million seeds / ha (Makkar and Becker, 1999a). The plant starts bearing pods 6 - 8 months after planting but regular bearing commences after the second year. The tree bears for 30 - 40 years. The drought tolerant nature of the tree makes it particularly suited to those marginal areas where the costs associated with the cultivation and harvesting of other commercial crops are high.
Nutrient composition
The seed kernel contains, on average, 40 per cent by weight of oil, the fatty acid composition of which is similar to that of olive oil and could be used for both culinary and industrial purposes. The seed oil contains 9.3 per cent palmitic, 7.4 per cent stearic, 8.6 per cent behenic, and 65.7 per cent oleic acids among the fatty acids. Myristic and lignoceric acids have also been reported.
In addition to high macronutrient content (Table 3), moringa leaves and pods are also rich in vitamins and minerals. Leaves (100g) contain 440 mg Ca, 70 mg P, 7 mg Fe, 110 mg Cu, 5.1 mg I, 11,300 IU pro-vitamin A, 120 mg vitamin B, 0.8 mg nicotinic acid, 220 mg ascorbic acid, and 7.4 mg tocopherol per 100 g. Per 100 g, the pod is reported to contain 30 mg Ca, 110 mg P, 5.3 mg Fe, 184 IU pro-vitamin A, 0.2 mg niacin, 120 mg ascorbic acid, 310 mg Cu, and 1.8 mg I.
The high true protein content of leaves (23 per cent in DM, Makkar and Becker, 1997c), the high proportion of this protein potentially available in the intestine (Makkar and Becker, 1997c), the presence of adequate levels of essential amino acids (higher than the levels present in the FAO reference protein), and low levels of antinutrients indicate their high nutritional quality. The high pepsin soluble nitrogen (82 - 91 per cent) and the low acid detergent insoluble protein (1 - 2 per cent) values for the meal suggest that most of the protein in the meal is available to most animals (Makkar and Becker, 1997c). The meal is deficient in lysine, leucine, phenylalanine + tyrosine and threonine when compared to the standard FAO protein but the contents of sulphur-containing amino acids in these samples are much higher (see Table 10).
Antinutrients
Moringa leaves are free from antinutrients except for saponins and phenols (Table 4). The concentration of phenol is much below the toxic threshold levels for animals (Makkar and Becker, 1997c) and saponins were inactive as far as haemolytic properties are concerned. In addition to the antinutrients listed in Table 4, alkaloids are also present in kernel meals (root-bark have been found to have two alkaloids, moringine and moringinine; moringinine is known to stimulate cardiac activity, raise blood-pressure, act on sympathetic nerve-endings as well as smooth muscles all over the body, and depress the sympathetic motor fibres of vessels in large doses only).
Glucosinolates, lectins and alkaloids which form the major antinutrient substances in Moringa seed meal could be easily removed by water extraction (Makkar and Becker, 1999a). However, this method has the disadvantage of also removing some soluble nutrients. Solid state fermentation of the seed meal using Rhizopus oligosporus sp. could be considered as this mould has been found to degrade glucosinolates in defatted rapeseed meal (Bau et al., 1994).
Fish feeding trials
There are no studies so far which report utilisation of Moringa leaves or seed meal as fish feed ingredients. Preliminary results from a trial in our lab, where Moringa leaf meal was used in Tilapia nilotica feeds, indicate growth-reducing effects at high levels of inclusion of raw leaf meal. Moringa plant parts have the potential to be a supplier of macro and micronutrients in a fish feed derived from a mixture of plant products.
3. Sesbania spp.
General information
Sesbania sesban (L) Merrill is a short-lived fodder shrub or small tree. This legume can tolerate wide temperature ranges, acidic soils and waterlogging, as well as soil salinity. S. sesban grows rapidly and is useful as fodder and green manure. This species has long been used for feeding livestock and for soil improvement in India and Africa.
Productivity and nutrient composition
Biomass production of Sesbania sesban has been reported to be 4.8 t / ha and N in the above-ground biomass to be 0.1 t / ha (Creamer and Baldwin, 2000). S. aculeata yields in the range of 1 to 1.5 t / ha of seeds (see Hossain and Becker, 2001).
The crude protein contents of Sesbania species (Table 5) are higher than those reported for conventional legumes, such as chickpea, mungbean and cowpea. Sesbania sp. are, however, deficient in essential amino acids except for leucine, tryptophan and histidine (see Table 10). Sesbania sp. are generally a good source of essential fatty acids (Hossain and Becker, 2001).
The organic matter digestibility of Sesbania seeds ranges from 67 - 72 per cent and nitrogen solubility in alkali from 81 - 89 per cent (Hossain and Becker, 2002).
Antinutrients
A potent antinutrient in Sesbania sp. in addition to the ones presented in Table 6 are the non-starch polysaccharides (NSP). The seeds contain about 30 - 42 per cent endosperm, 75 per cent of which is made of an NSP, galactomannan (Chandra and Farooqui, 1979).
Soaking overnight in water followed by autoclaving has been shown to be effective in significantly bringing down levels of various antinutrients in Sesbania seed meal (Table 7).
Fish feeding trials
Hossain et al. (2001a, 2002) observed that untreated Sesbania aculeata seed meal could be added to the diets of common carp and Nile tilapia up to a level of 10 per cent without compromising growth. Even after considerably reducing various antinutrients by soaking and soaking + autoclaving (Table 8), growth in carp fed diets containing Sesbania seed meals could not reach levels observed with a fishmeal based diet (Hossain et al., 2001b). The NSP, galactomannan was later found to be the substance primarily responsible for retarding growth in both carp and tilapia (Hossain et al., 2001c and unpublished data). More research is needed as to whether removal of the galactomannan rich endosperm would enable higher inclusion of Sesbania seed meal in fish diets.
4. Mucuna pruriens
General information
The velvet bean (Mucuna pruriens., Fabaceae) is a weed-smothering, nitrogen-fixing herbaceous legume. It is found throughout the tropics, and has potential to help retain and even restore fertility on vast acreage of degraded farmland, including some extremely poor soils and tropical sites with highly adverse environmental conditions. The plant is drought resistant, tolerates acidity in the soil (pH 5 - 6.5) and is a fast grower during the first 4 - 6 months. Cultivation of velvet beans have been encouraged on a large scale by several non-governmental organisations in Africa and South America for reclaiming eroded soils, for use as green manure, and as an inexpensive source of organic fertiliser to build up organic matter.
Production and nutrient composition
Velvet bean has been reported to produce nearly 30 t / ha of fresh leaves and stems per year or about 0.1 t of N / ha per year. Production of green manure and reclamation of eroded soil have been its primary uses so far. In a normal harvest this bean generates around 0.8 to 2 t of seed per hectare making it one of the most productive legumes. Utilisation of these protein rich seeds is a further potential use of this plant. The beans (M. pruriens var. utilis) have been used as food by tribal peoples in the hilly regions of south-west India (Siddhuraju et al., 2000).
The nutrient composition of mucuna presented in Table 8 shows crude protein content to be higher than some commonly cultivated legumes. In vitro protein digestibility is also high (67 - 70 per cent) compared to other legume seeds. The contents of essential amino acids (see Table 10) such as valine, isoleucine, tyrosine, and phenyl alanine, leucine, and lysine were found to be similar to or higher than those of the FAO refernce pattern (Siddhuraju et al., 2000). Sulphur amino acids and tryptophan seem likely to be the limiting factors for inclusion of mucuna beans as a feed ingredient. The seed lipids are rich in unsaturated fatty acids (about 65 per cent) and have very high content of linoleic acid (48 per cent). The high amount of resistant starch (40% of the dry matter; Siddhuraju et al., 2000) may reduce nutritional value.
Antinutrients
Mucuna seeds contain a high level of antinutrients (Table 9). The most important among them are probably NSPs (11 per cent of dry matter) and L-DOPA (4.7 per cent of DM). L-DOPA itself may produce deletereous effects. In addition its degraded products produced during hydrothermal processing (polymeric quinones) may affect protein availability by binding to protein (Siddhuraju and Becker, 2001b). Soaking in CaOH2, rather than in water substantially reduced L-DOPA and total phenol content in mucuna seed meal (Ruíz Sesma, 1999). The resistant starch may become more available after hydrothermal processing.
A number of research projects have investigated the potential of mucuna (different varieties) as a feed for poultry, monogastrics, and ruminants, particularly in Mexico. Studies by Duque Díaz (1993) and Castillo (1996) indicate the suitability of processed Mucuna (12 h soaking followed by 2 h boiling, seed coat removal, sun drying, and grinding) feeds for adult chicken. Ruíz Sesma (1999) found that mucuna flour produced by crushing seed, followed by 24 h soaking in 4 per cent CaOH2, drying at 60ºC, and grinding, could form a pig feed ingredient.
Fish feeding trials
Common carp fed diets containing 13 per cent mucuna seed meal (white variety) showed no significant reduction in growth compared to fish fed a fishmeal based control (Siddhuraju and Becker, 2001b). It was found that hydrothermal treatment did not improve the nutritional quality of mucuna to carp even though it reduced most of the antinutrients (Table 9). The presence of L-DOPA by-products, L-DOPA metabolites and NSPs might have been the reason for the negative effects. Alkaline soaking followed by thermal treatment may improve the nutritional quality of mucuna meal for fish.
Limitations to the use of plant derived ingredients in fish feed
Acceptability
Plant ingredients, particularly those containing high levels of antinutrients have been found to have a bitter taste which could result in lack of acceptability of the feed. Soaking in water followed by drying has been shown to increase acceptance, and also rid the plant material of several toxic compounds. The disadvantage is that some soluble nutrients are also lost.
Nutrient inadequacy
Plant-derived proteins are conventionally deficient in amino acids such as lysine, methionine, cysteine and tryptophan. The amino acid composition of the various plants dealt with here, and some of their products are listed in Table 10. It can be seen that jatropha and moringa products have higher levels of one of the most commonly deficient amino acids (methionine) compared to soybean meal (among the most highly regarded plant protein sources). It should be mentioned here that soybeans have undergone considerable species betterment through breeding over the last several years and grow on highly enriched soil whereas the plants mentioned here have not and they grow on poor soils. There is thus scope for improving the genetic character and biological value of these plants through agronomic interventions. Synthetic amino acid supplementation have been effective in partially compensating for lower dietary levels in large stomached fish such as trout (Mambrini et al., 1999), whereas it is much less effective in the case of stomachless fish such as common carp (Becker, 1984; Murai, 1985). This group of fish happen to be the most important culture species, particularly in Asia. Plant products such as those obtained from jatropha and moringa that are rich in commonly deficient amino acids such as methionine could be used as a source of these amino acids in carp species.
The definitive amino acid requirements of fish are difficult to obtain. In most of the research papers, amino acid requirements are calculated from amino acid dose to growth response regressions. Many fish are known to use synthetic amino acids sub-optimally (see NRC, 1993 for references), and the requirement of individual amino acids depend on other factors such as digestibility of protein, and presence and availability of other amino acids (Lovell, 1998). The essential amino acid requirements presented in Table 11 are based on NRC recommendations (NRC, 1993). It can be seen that requirements for essential amino acids differ from species to species. There is therefore need to formulate diets keeping in mind the requirement of the fish species concerned. Since fishmeal has a superior quality as far as essential amino acid content is concerned, its complete elimination from feeds might adversely affect growth in most fish. A judicious mixture of different plant derived materials along with a minimal amount of fishmeal would seem to be the best choice in feed formulation to ensure nutrient adequacy and ready acceptance by the fish.
Antinutrients
As described in previous sections, most of the abovementioned plant-based nutrient sources contain high levels of various antinutrients. The most important among the antinutrients in plant-based material are glucosinolates, phytates, protease inhibitors, non-starch polysaccharides (NSP), saponins, tannins, lectins, and gossypols. Others such as phytoestrogens, alkaloids, cyanogens, mimosine, cyclopropenoid fatty acids, canavanine, antivitamins, and phorbol esters could also prove deleterious. From the fish feeding trials described above it is evident that common culture species do tolerate many of these antinutrients at inclusion levels of up to 15 per cent of plant-derived materials. The effects of antinutrients on finfish have been reviewed in Francis et al. (2001a). Hydrothermal treatment and soaking with water is efficient in removing high levels of antinutrients such as glucosinolates, protease inhibitors, lectins, tannins and saponins (see tables 7 and 9). Supplementing high phytate diets with the enzyme phytase have been found to increase availability of dietary phosphorous to various fish species (see Hardy, 2000). NSPs present in the diets could be neutralised to a certain extent by addition of enzymes such as glycanase (Hardy, 2000). Gamma-ray irradiation also holds some promise in neutralising the negative effects of certain antinutrients e. g. NSPs and saponins (Siddhuraju et al., 2002)
Some of the secondary plant compounds may even have beneficial effects when present in diets of fish in small amounts. For example, saponins have been found to promote growth in common carp and tilapia when present in the diets at 150 mg kg-1 (Francis et al., 2001b, 2002). Saponins might increase the digestibility of carbohydrate-rich foods because of their detergent-like activity, which reduces viscosity and thus prevents the normal obstructing action of such foods against movement of digesta in the intestine (the NSPs exert their antinutrient action by forming viscous clumps in the intestine, which obstruct the digestive process). Cyclical, short-term offers of trypsin inhibitors along with the diet have been shown to increase protein digestibility and growth performance in carp (Becker K., unpublished). Interactions among various antinutrients in a particular feed source may also have effects on their potency. Saponin-tannin, tannin-lectin and tannin-cyanogen interactions may reduce their individual toxic effects (see review by Francis et al., 2001a). These interactions may also result in effects that are more detrimental than those of individual antinutrients. More insights into the nutritional, physiological and ecological effects of antinutrients on fish need to be accumulated through studies using purified individual antinutrients and their mixtures in proportions similar to those in alternative nutritional sources in fish feeds. Such studies would provide data useful for designing optimum inclusion levels of plant-derived materials in aquaculture diets. Research should also be directed at: i) treatment methods that would neutralise the negative effects of the antinutritional factors and/or bring them down to harmless levels without affecting availability of other nutrients, ii) economic analysis in terms of cost:benefit ratio of incorporating the treated meal in fish diet, on which the use of these unconventional feed resources will be based, iii) exploitation of other lesser-known and lesser-researched seeds in fish diets, a collated information on some of these seeds is available in Makkar and Becker (1999a).
In conclusion, addition of any of the abovementioned plants/ plant products mentioned above beyond levels of 10-15 per cent replacement of fishmeal in the diet can be attempted only after adequate treatment of the material to reduce toxin levels and increase acceptability. More work toward techniques that would increase their nutritional value could prove to be profitable in many ways, although a cost-benefit analysis is called for in each instance.
Literature cited
Aderibigbe, A.O., Johnson, C.O.L.E., Makkar, H.P.S., Becker, K., Foidl, N., 1997. Chemical composition and effect of heat on organic matter- and nitrogen-degradability and some antinutritional components of Jatropha meal. Anim. Feed Sci. Technol. 67, 223-243
Bau, H.M., Villaume, C., Lin, C.F., Evrard, J., Quemener, B., Nicolas, J.P., Mejean, L., 1994. Effect of a solid-state fermentation using Rhizopus oligosporus sp. T-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal. J. Sci. Food Agric. 65, 315-322.
Becker, K., 1984. Untersuchungen zum Energieumsatz des Karpfen (Cyprinus carpio L.) in Hunger-, Erhaltungs,- und Leistungsstoffwechsel, Habilitationsschrift, Institüt für Tierphysiologie, Tierernahrung und Futtermittelkunde, University of Göttingen, Germany, 224p.
Castillo C.J.B. 1996. Use of velvetbean in the feeding of poultry in the context of smallholder producers' agricultural systems (Spanish). Paper presented at the Fourth Meeting of the RED of the Rockefeller Foundation. Universidad Autónoma de Yucatán, Facultad de Medicina Veterinaria y Zootecnia, Unidad de Posgrado e Investigación.
Chandra, V., Farooqi, M.I.H., 1979. Dhaincha for seed gum. Economic Botany Information Service, National Botanical Research Institute, Lucknow, India, Extension Bulletin No. 1
Creamer, N.G.; Baldwin, K.R., 2000. An evaluation of summer cover crops for use in vegetable production systems in North Carolina. Hort. Science 35, 600-603.
Duque Díaz, A., 1993. Evaluation of velvet bean (Stizolobium deeringianum) in weed control in citrus and as a protein source in the fattening of chickens (Spanish). M.Sc. thesis. Instituto Tecnológico Agropecuario No. 2, Conkal, Yucatan.
FAO, 2000. Yearbook of Fishery Statistics 1998. Vol. 86/2. Aquaculture production. FAO Statistics Series No. 154 and Fisheries Series No. 56, Rome, FAO. 182p.
Foidl, N., Makkar, H.P.S. and Becker, K., 2001. The potential of Moringa oleifera for agricultural and industrial uses, pp 45-76, In: The Miracle Tree: The Multiple Uses of Moringa (Ed) Lowell J. Fuglie, CTA, Wageningen, The Netherlands.
Francis, G., Makkar H.P.S., Becker K., 2001a. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197-227.
Francis, G., Makkar, H.P.S., Becker, K., 2001b. Effects of Quillaja saponins on growth, metabolism, egg production, and muscle cholesterol in individually reared Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. (C) 129, 105-114.
Francis, G., Makkar, H.P.S., Becker, K., 2002. Dietary supplementation with a Quillaja saponin mixture improves growth performance and metabolic efficiency in common carp (Cyprinus carpio L.). Aquaculture 203, 311-320.
Hardy, R.W., 2000. New developments in aquatic feed ingredients, and potential of enzyme supplements. In: Cruz-Suarez, L. E., Ricque-Marie, D., Tapia-Salazar, M., Olvera-Novoa, M. A., Civera-Cerecedo, R., (Eds.), Advances en Nutricion Acuicola V. Memorias del V Simposium Internacional de Nutricion Acuicola. 19-22 November, 2000, Merida, Yucatan, Mexico.
Heller, J. 1996. Physic nut Jatropha curcas L. Promoting the conservation and use of underutilzed and neglected crops. 1. Institute of Plant Genetics and Crop Plant Research, Gatersleben/ International Plant Genetic Resources Research Institute, Rome.
Henning, R. 1996. Combating desertification-fuel from Jatropha plants. In: UNIDO symposium on development and utilisation of biomass energy in developing countries, Vienna, December 1995, UNIDO, Environment and energy branch, Industrial sectors and environment division, Vienna, Austria. Accessed from http://www.ipgri.cgiar.org/publications/pdf/161.pdf on 3-07-2001.
Hossain, M.A., Becker, K., 2001. Nutritive value and antinutritive factors in different varieties of Sesbania seeds and their morphological fractions. Food Chem. 73, 421-431.
Hossain, M.A., Focken, U., Becker, K., 2001a. Evaluation of an unconventional legume seed, Sesbania aculeata, as a dietary protein source for common carp, Cyprinus carpio L. Aquaculture 198, 129-140.
Hossain, M.A., Focken, U., Becker, K., 2001b. Effect of soaking and soaking followed by autoclaving of Sesbania seeds on growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture 203, 133-148.
Hossain, M.A., Focken, U., Becker, K., 2001c. Galactomannan-rich endosperm of sesbania (Sesbania aculeata) seeds are responsible for retardation of growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture 203, 121-132.
Hossain, M.A., Focken, U., Becker, K., 2002. Nutritional evaluation of dhaincha (Sesbania aculeata) seeds as a dietary protein source for tilapia, Oreochromis niloticus L. Aquac. Res. (in press).
Hossain, M.A., Becker, K., 2002. In vitro rumen degradability of crude protein in seeds from four Sesbania spp. and the effects of treatments designed to reduce the levels of antinutrients in the seeds. Anim. Feed Sci. Technol. 95, 49-62.
International Fishmeal and Fish Oil Manufacturers Association (IFOMA), 2000. Predicted use of fishmeal and fish oil in aquaculture - revised estimate. IFOMA Update No. 98, April 2000, Potters Bar, UK
Lovell, T., 1998. Nutrition and feeding of fish. Kluwer Academic Publications, Boston/Dordrecht/London. pp 23-29.
Makkar, H.P.S, Aderibigbe, A.O., Becker, K., 1998. Comparative evaluation of a non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem. 62, 207-215.
Makkar, H.P.S., Becker, K., 1997a. Jatropha curcas toxicity: identification of toxic principle(s). In: Garland, T , Barr A. C. (Eds) Toxic plants and other natural toxicants, Proceedings 5th International Symposium on Poisonous Plants, San Angelo, Texas, USA, May 19-23, CAB international, New York, pp 554-558.
Makkar, H.P.S., Becker, K., 1997b. Potential of Jatropha seed meal as a protein supplement to livestock feed and constraints to its utilisation. Proceedings of Jatropha 97: International symposium on biofuel and industrial products from Jatropha curcas and other tropical oil seed plants, 23-27 Feb. 1997, Managua, Nicaragua.
Makkar, H.P.S., Becker, K., 1997c. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J. Agr. Sci. Cambridge 128, 311-322.
Makkar, H.P.S., Becker, K., 1999a. Plant toxins and detoxification methods to improve feed quality of tropical seeds - Review. Asian-Aus. J. Anim. Sci. 12 (3), 467-480.
Makkar, H.P.S., Becker, K., 1999b. Nutritional studies on rats and fish (carp Cyprinus carpio) fed diets containing unheated and heated Jatropha curcas meal of a non-toxic provenance. Plant Food Hum. Nutr. 53, 183-192.
Mambrini, M., Roem, A.J., Cravedi, J.P., Lalles, J.P., Kaushik, S.J., 1999. Effects of replacing fishmeal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J. Anim. Sci. 77, 2990-2999.
Murai, T., 1985. Biological assessment of nutrient requirements and availability of fish. Special workshop at the International Congress on Nutrition, August 19-25, Brighton, England.
Naylor, R.L., R.J. Goldberg, J.H. Primavera, N. Kautsky, M.C. Beveridge, J. Clay, C. Folke, J. Lubchenco, H. Mooney & M. Troell. 2000. Effect of aquaculture on world fish supplies. Nature, 405:1017-1024
NRC, 1993. Nutrient Requirements of Fish. National Academy press, Washington D. C. 114p.
Ruíz Sesma, B. 1999. Evaluation of velvetbean (Stizolobium deeringianum) without and with processing as an ingredient in the diet of pigs (Spanish). M.Sc. thesis. Universidad Autónoma de Yucatán, Facultad de Medicina Veterinaria y Zootecnia, Unidad de Posgrado e Investigación.
Siddhuraju, P., Becker, K., 2001a. Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of Indian tribal pulse, Mucuna pruriens var. utilis. J. Agric. Food Chem., 49, 3058-3067.
Siddhuraju, P., Becker, K., 2001b. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in common carp (Cyprinus carpio L.): an assessment by growth performance and feed utilisation. Aquaculture,196, 105-123.
Siddhuraju, P., Becker, K., Makkar, H.P.S., 2000. Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an under-utilised tropical legume, Mucuna pruriens var. utilis. J. Agric. Food Chem., 48, 6048-6060.
Siddhuraju, P., Makkar, H.P.S., Becker, K., 2002. The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chem. (in press).
Tacon, A. G. J., Forster, I. P., 2001. Global trends and challenges to aquaculture and aquafeed development in the new millennium. Accessed from http://www.seaweb.org/AAAS/trends html on 3-7-2001.
Table 1. Chemical composition of extracted meal (% dry matter) of the toxic and non-toxic varieties of Jatropha curcas

Toxic variety
Non-toxic variety
Crude protein
56.4
63.8
Lipid
1.5
1.0
Ash
9.6
9.8
Gross energy (MJ/kg)
18.2
18.0
Neutral Detergent Fibre
9.0
9.1
Source: Makkar et al. 1998
Table 2. Important antinutrients in seed meal of toxic and non toxic variety of Jatropha curcas
Component
Toxic variety
Non-toxic variety
Phorbolesters (mg/g kernel)
2.79
0.11
Total phenols (% tannic acid equivalent)
0.36
0.22
Tannins (% tannic acid equivalent)
0.04
0.02
Phytates (% dry matter))
9.40
8.90
Saponins (% diosgenin equivalent)
2.60
3.40
Trypsin inhibitor (mg trypsin inhibited per g sample)
21.3
26.5
Lectins (1/mg of meal that produced haemagglutination per ml of assay medium)
102
51
All data are on dry matter basis,
Source: Makkar et al. 1998
Table 3. Chemical composition of Moringa oleifera parts (% dry matter)
Substance
Leaves
kernels
Fat free kernel meal
Crude protein
26.4
36.7
61.4
Lipid
ND
41.7
ND
Ash
8.87
3.8
5.65
Neutral detergent fibre
1.51
4.8
8.2
Gross energy (MJ/kg)
19.35
26.7
19.4
Source: Makkar and Becker 1997c.
Table 4. Important antinutrient factors present in Moringa oleifera parts
Substance
Leaves
Kernels
Fat free kernel meal
Total phenols (% tannic acid equivalent)
4.4
0.02
0.04
Tannins (% tannic acid equivalent)
1.2
ND
ND
Saponins (% diosgenin equivalent)
8.1
1.1
1.4
Phytate (% dry matter)
2.1
2.6
4.1
Lectins (1/mg of meal that produced haemagglutination per ml of assay medium)
ND
Variable (15/66.5/250)
Variable (15/66.5/500)
Cyanogenic glycosides (%)
ND
0.5
1.3
Glucosinolates (mmol/g)
ND
46.4
65.5
ND - not detected
Source: Makkar and Becker 1997c.
Table 5. Proximate composition of different Sesbania seeds (% of dry matter)
Seeds
Crude protein
Lipid
Ash
Crude fibre
Nitrogen Free Extract
Gross energy (kJ g-1)
S. aculeata
33.1
6.0
3.9
10.9
46.1
20.0
S. rostrata
32.0
4.7
4.0
11.8
47.4
19.2
S. sesban (ILRI no. 10865D)
32.3
5.0
2.7
15.5
44.6
19.8
S. sesban (ILRI no. 15019D)
29.1
6.0
3.3
15.8
45.8
20.0
Source Hossain and Becker, 2001
Table 6. Antinutrients present in seed meals of Sesbania species
Component
Sesbania aculeata
Sesbania rostrata
Sesbania sesban (1)
Sesbania sesban (2)
Total phenols (% tannic acid equivalent)
3.08
2.96
4.85
5.95
Tannins (% tannic acid equivalent)
2.25
1.99
1.97
2.02
Phytates (% dry matter)
2.16
1.89
2.35
2.37
Saponins (% diosgenin equivalent)
0.52
0.50
1.46
1.26
Trypsin inhibitor (mg trypsin inhibited per g sample)
5.25
5.64
14.01
13.70
Lectins (1/mg of meal that produced haemagglutination per ml of assay medium)
10.20
20.5
20.5
20.5
All data on DM basis
Source - Hossain and Becker, 2001; S. sesban (1) - ILRI no. 10865D, S. sesban (2) - ILRI no. 15019D
Table 7. Antinutrients present in raw and treated Sesbania aculeata seed meal
component
Raw meal
Soaked meal
Soaked and Autoclaved meal
Total phenols (% tannic acid equivalent)
3.08
1.36
1.30
Tannins (% tannic acid equivalent)
2.25
1.15
0.99
Phytates (% dry matter))
2.16
1.64
1.16
Saponins (% diosgenin equivalent)
0.52
0.44
0.29
Trypsin inhibitor (mg trypsin inhibited per g sample)
5.25
4.77
1.02
Lectins (1/mg of meal that produced haemagglutination per ml of assay medium)
10.20
10.20
ND
All data are on DM basis
Source Hossain et al., 2001b
Table 8. Chemical composition of different Mucuna pruriens var. utilis seeds (% of dry matter)
Mucuna seeds
Crude protein
Lipid
Ash
Crude fibre
NFEa
Gross energy (kJ g-1)
White variety
29.8
4.5
3.4
8.8
53.3
19.4
Black variety
24.3
4.9
3.9
9.0
57.9
19.6
a Nitrogen free extract
Source: Siddhuraju and Becker, 2000
Table 9. Antinutrients present in raw and treated Mucuna pruriens var. utilis (white variety)
Component
Raw meal
Soaked and Autoclaved meal
Alkali soaked and autoclaved
Total phenols (% tannic acid equivalent)
5.54
2.56
2.06
Tannins (% tannic acid equivalent)
0.37
0.20
NA
Phytates (% dry matter))
0.90
0.48
0.49
Saponins (% diosgenin equivalent)
1.15
0.51
NA
L-DOPA
4.70
1.85
1.62
Trypsin inhibitor (mg trypsin inhibited per g sample)
13.8
0.55
1.07
Chymotrypsin inhibitor (chymotrypsin inhibitor unit per mg sample)
10.97
ND
ND
Phytohaemagglutinating activity (phytohaemagglutinating unit per mg sample)
0.2
ND
ND
All values on DM basis
L-DOPA - 3, 4-dihydroxyphenylalanine
ND - not detectable
NA - not available
Source: Siddhuraju and Becker, 2001a
Table 10. Composition of important amino acids of seeds/parts (g / 16gN) compared with fishmeal and soybean meal
Aminoacids
Fish meala
Soybean mealb
Jatropha seed mealc
Moringa leavesd
Moringa kernel meald#
Sesbania aculeatab
Sesbania sesbanb
Mucuna seedsa
Methionine
3.12
1.22
1.76
1.98
1.90
1.03
0.96
0.83
Cystine
1.19
1.70
1.58
1.35
4.22
0.70
0.75
1.13
Valine
5.84
4.59
5.30
5.68
3.47
3.00
2.71
4.17
Isoleucine
4.70
4.62
4.85
4.50
3.05
3.06
2.56
4.07
Leucine
8.09
7.72
7.50
8.70
5.27
5.36
4.56
5.87
Phenylalanine
4.03
4.84
4.89
6.18
3.97
3.55
2.99
4.17
Tyrosine
3.01
3.39
3.78
3.87
1.50
2.73
2.14
3.97
Histidine
2.10
2.50
3.08
2.99
2.27
8.58
12.5
3.07
Lysine
7.38
6.08
3.40
5.60
1.47
4.55
4.20
5.67
Arginine
7.18
7.13
12.9
6.23
11.6
8.58
6.01
5.30
Threonine
4.52
3.76
3.59
4.66
2.25
2.45
2.38
2.83
Tryptophan
1.13
1.24
1.31*
2.10
NA
1.36
2.38
0.83
a,Adapted from Siddhuraju and Becker, 2001b
btaken from Hossain and Becker, 2001
cTaken from Makkar and Becker, 1999a; *value of toxic variety, other values of non toxic seeds
d From Makkar and Becker 1997c, # after oil extraction
Table 11. Essential amino acid requirement of some culture fish (% of diet)
Aminoacids
Common carp
Nile tilapia
Rainbow trout
Pacific salmon
Channel catfish
Methionine + cystine
0.94
0.90
1.0
1.36
0.64
Valine
1.10
0.28
1.2
1.09
0.84
Isoleucine
0.76
0.87
0.9
0.75
0.73
Leucine
1.00
0.95
1.4
1.33
0.98
Phenylalanine + tyrosine
1.98
1.55
1.8
1.73
1.40
Histidine
0.64
0.48
0.7
0.61
0.42
Lysine
1.74
1.43
1.8
1.70
1.43
Arginine
1.31
1.18
1.5
2.04
1.20
Threonine
1.19
1.05
0.8
0.75
0.56
Tryptophan
0.24
0.28
0.2
0.17
0.14
Protein, crude (digestible) present
35 (30.5)
32 (28)
38 (34)
38 (34)
32 (28)
After NRC 1993, these requirements have been determined with highly purified ingredients in which the nutrients are highly digestible, therefore the values presented represent near 100% bioavailability.

Market Research Report Published by: M. B. Sambhus & Associates, Chartered

ABSTRACT

The Indian Government has taken major initiatives to encourage Jatropha Plantations with a view to manufacture Bio-Diesel from Jatropha Oil. The Government has targeted to bring 11 Million hectares of land under Jatropha Cultivation by 2011 to manufacture 13 Million Tonnes Bio-Diesel. The Bio-Diesel will be blended with petro-diesel, starting with a 5% blend which will be increased to 20% and beyond in a phased manner. It is estimated that India will need 13 Million Tonnes of Bio-Diesel by 2011 making it a US $ 9 Billion market. Huge capacities of Bio-Diesel will have to be created to meet this demand. Many states and Indian Railways are offering lands on lease to private sector industries for developing Jatropha plantations.
Because of the huge demand for Bio-Diesel and scarce supply of petro-diesel, the price for Bio-Diesel is ruling high and it is expected to go higher. The projects having own source of Jatropha Seeds will be quite profitable with attractive long term returns.
This report extensively deals with the Bio-Diesel technology, Indian market scenario, estimated demand, proposed locations, Government initiatives, Estimated Cost of Project, Means of Finance, Projected Profitability (with extensive working notes for each head), Projected Cash Flow and Balance Sheet, Break Even Level, IRR (Project and Promoter), Pay Back Period and Sensitivity Analysis.
Prospective investors who wish to set-up Jatropha Plantation and Bio-Diesel projects in India would find the Report immensely useful.






Product Type: Market Research Report Published by: M. B. Sambhus & Associates, Chartered AccountantsPublished: March 2007Product Code: R3452-1
Description
The Indian Government has taken major initiatives to encourage Jatropha Plantations with a view to manufacture Bio-Diesel from Jatropha Oil. The Government has targeted to bring 11 Million hectares of land under Jatropha Cultivation by 2011 to manufacture 13 Million Tonnes Bio-Diesel. The Bio-Diesel will be blended with petro-diesel, starting with a 5% blend which will be increased to 20% and beyond in a phased manner. It is estimated that India will need 13 Million Tonnes of Bio-Diesel by 2011 making it a US $ 9 Billion market. Huge capacities of Bio-Diesel will have to be created to meet this demand. Many states and Indian Railways are offering lands on lease to private sector industries for developing Jatropha plantations.
Because of the huge demand for Bio-Diesel and scarce supply of petro-diesel, the price for Bio-Diesel is ruling high and it is expected to go higher. The projects having own source of Jatropha Seeds will be quite profitable with attractive long term returns.
This report extensively deals with the Bio-Diesel technology, Indian market scenario, estimated demand, proposed locations, Government initiatives, Estimated Cost of Project, Means of Finance, Projected Profitability (with extensive working notes for each head), Projected Cash Flow and Balance Sheet, Break Even Level, IRR (Project and Promoter), Pay Back Period and Sensitivity Analysis.
Prospective investors who wish to set-up Jatropha Plantation and Bio-Diesel projects in India would find the Report immensely useful.
Table of Contents
DISCLAIMER 1 PROJECT HIGHLIGHTS 2 INTRODUCTION 2.1 The Project Concept 2.2 Project Location 2.3 Joint Venture
3 JATROPHA - A SOURCE OF BIO-DIESEL 3.1 Introduction
Table 3.1.1 : Particulars of Jatropha Cultivation 3.2 Jatropha - a source of Bio-Diesel 3.3 Advantages of Jatropha Cultivation 3.4 Jatropha Oil
Table 3.4.1 : Chemical Analysis of Jatropha Curcas Oil 3.5 Crop Practices in the Plantation & Production of Jatropha Seeds
Table 3.5.1 : Yield per Acre of Jatropha Seeds 3.6 Requirement of Jatropha Seeds for the Project
Table 3.6.1 : Yield of Jatropha Seeds for the Project 3.7 List of Suppliers of Jatropha Planting Materials 3.8 Storage of Seeds
4 BIO-DIESEL & JATROPHA (INTERNATIONAL SCENARIO & INDIAN INTIATIVES) 4.1 What is Bio-Diesel 4.2 Why to use Bio-Diesel 4.3 International Scenario 4.4 Indian Scenario
Table 4.4.1 : Estimated Demand of Bio-Diesel in India
Table 4.4.2 : Land Availability for Jatropha Cultivation in India 4.5 Initiatives by Government of India 4.6 Conclusion
5 MARKET VIABILITY 5.1 Market Research
Table 5.1.1 : Proposed Annual Production and Sales
Table 5.1.2 : Application of Products 5.2 Buy Back Arrangement of Jatropha Seeds in Phase-I 5.3 Manufacture and Sell of Bio-Diesel in Phase-II
Table 5.3.1 : Average Sales Realisation
Table 5.3.2 : Cost of Production & Sales per Ton of Jatropha Seeds
Table 5.3.3 : Contribution per Ton of Jatrohpa Seeds 5.4 Market Potential of Bio-Diesel
Table 5.4.1 : Demand Supply Position in India 2001-02 & 2006-07
Table 5.4.2 : Future Demand for Bio-Diesel in India
6 TECHNICAL VIABILITY 6.1 Industrial Process 6.2 Factors Affecting the Reaction 6.3 Process in Detail 6.4 Flow Diagram - Bio-Diesel from Jatropha Seeds 6.5 Process Flow Chart
7 THE PROJECT 7.1 Project Concept 7.2 Land 7.3 Jatropha Plant Supplier and Seeds Buy-back 7.4 Utilities 7.5 Raw Materials 7.6 Manpower
Table 7.6.1 : Manpower Requirement
7.7 Implementation Schedule
Table 7.7.1 : Implementation Schedule
8 COST OF THE PROJECT 8.1 Land 8.2 Buildings 8.3 Plantation 8.4 Irrigation Equipments 8.5 Plant & Machinery 8.6 Other Fixed Assets 8.7 Contingencies 8.8 Preliminary & Pre-operative Expenses 8.9 Assessment of Working Capital & Working Capital Margin
Table 8.9.1 : Assessment of Working Capital (Phase - I & II) 8.10 Estimated Cost of the Project
Table 8.10.1 : Estimated Cost of the Project
9 PROPOSED MEANS OF FINANCE 9.1 Proposed Means of Finance
Table 9.1.1 : Proposed Means of Finance in Phases - I & II
9.2 Term Loan in Phase-I
Table 9.2.1 : Term Loan in Phase - I 9.3 Term Loan in Phase-II
Table 9.3.1 : Term Loan in Phase - II 9.4 Promoters' Contribution
10 PROJECTED PROFITABILITY 10.1 Installed Capacity, Capability Utilisation and Production 10.2 Sales 10.3 Raw Material, Seed Collection and Oil Extraction 10.4 Cost of Utilities 10.5 Salaries and Wages 10.6 Factory and Plantation Overheads 10.7 Administration Expenses 10.8 Selling and Distribution Expenses 10.9 Interest on Term Loan (Phase-I) 10.10 Interest on Term Loan (Phase-II) 10.11 Interest on Working Capital 10.12 Depreciation 10.13 Provision for Taxation 10.14 Projected Profitability
Table 10.14.1 : Projected Profitability 10.15 Profitability Highlights
Table 10.15.1 : DSCR
11 PROJECTED CASH FLOW 11.1 Sources of Funds 11.2 Application of Funds 11.3 Projected Cash Flow
Table 11.3.1 : Projected Cash Flow
12 PROJECTED BALANCE SHEET 12.1 Sources of Funds 12.2 Application of Funds 12.3 Summarized Balance Sheet
Table 12.3.1 : Projected Balance Sheet
13 BREAK EVEN ANALYSIS 13.1 Assumptions 13.2 Break Even Point
Table 13.2.1 : Break Even Analysis
14 IRR AND PAYBACK PERIOD 14.1 Internal Rate of Return (IRR) 14.2 Payback Period
15 SENSITIVITY ANALYSIS 15.1 Sensitivity Analysis 15.2 Variation in Parameters 15.3 Impact of Variation
16 CONCLUSIONS AND RECOMMENDATIONS
Annexure I COST OF PROJECT II MEANS OF FINANCE III PROJECTED PROFITABILITY IV PROJECTED CASH FLOW STATEMENT V PROJECTED BALANCE SHEET VI BREAK EVEN ANALYSIS VII (A) INTERNAL RATE OF RETURN (for the Project as a whole) VII (B) INTERNAL RATE OF RETURN (for Promotors) VIII PAY BACK PERIOD IX SENSITIVITY ANALYSIS
WorkingNote No.1 INSTALLED CAPACITY & PRODUCTION 2 QUANTITIES & VALUE OF SALES 3 CONSUMPTION OF RAW MATERIALS 4 COST OF UTILITIES 5 SALARIES & WAGES 6 FACTORY & PLANTATION OVERHEADS 7 ADMINISTRATION EXPENSES 8 SELLING & DISTRIBUTION EXPENSES 9(A) TERM LOAN & INTEREST THEREON (PHASE-I) 9(B) TERM LOAN & INTEREST THEREON (PHASE-II) 10 ASSESSMENT OF WORKING CAPITAL 11 DEPRECIATION 12 PROVISION FOR TAXATION

자트로파 cake의 독성을 빼면 18%사료원료됨. Myanmar to produce bio-diesel from jatropha curcas

Back
Myanmar to produce bio-diesel from jatropha curcas
Prof. Mr Klaus Becker of Germany and party invited by Shwe Thanlwin Co and Mr Bernd Bieger of MAN Ferrostaal Industrieanlagen GmbH (Yangon Branch) conducted a presentation under the arrangements of the Myanmar Industrial Development Committee at the Traders Hotel in Yangon on 18 November.
Today, the world is facing insufficient supply of fuel, and many countries are seeking new means to cope with the global issue.
The Head of State with vision has given guidance on extensive growing of the crops such as jatropha curcas (physic nut), sugarcane, corn and tapioca from which bio-diesel can be extracted at national level. Among
them, jatropha curcas grows well on almost any soil and any climate. Now, jatropha curcas plants grown in the states and divisions in Myanmar have started to bear fruit.
The Nagarmin biodiesel plant at the industrial ward in Muse, Shan State (North) can mill 19 baskets of jatropha curcas seeds producing at the rate of 25 gallons an hour.
At the ceremony, General Manager U Moe Kyaw of Shwe Than Lwin Co said that jatropha curcas could be grown easily, but it was required to ensure a high percentage of oil content in seeds, technological development and boosting production. Oil directly extracted from jatropha curcas seeds does not last long, he said, stressing the importance of producing quality bio-diesel that could be substituted in the place of oil.
To produce quality bio-diesel called for a bio-diesel plant worth about 40 million kyats, he said, adding that the plant could be operated with the labour of two persons producing at the rate of 600 litres of biodiesel per 10 hours.
Titrant solution, methanol, sodium hydroxide (NaOH) and distilled water were to be blended with jatropha curcas oil to remove the soap and glycerin liquids to get quality bio-diesel, he said. Bio-diesel could be extracted from many species of vegetables, but jatropha curcas had more percentage of oil content with less cost than any other crops. African countries and India produced bio-diesel for four years. Myanmar could achieve greater success in a short time in producing bio-diesel if the findings from the research done in the two countries were combined with its experiences. Then, Chairman U Kyaw Win of Shwe Than Lwin Co was seeking advice from German experts and holding discussions with experts from other nations. The company would soon be able to produce bio-diesel effectively from the jatropha curcas seeds produced domestically, he said.
Professor Mr Klaus Becker said that jatropha curcas existed for many years. He said, its benefits had been many and varied, according to researches done or ongoing. It did not need fertile land nor good climate. Even with a little water and small amouts of fertilizer, it grew well at any soil including desert during the period ranging from six months to two years. It was resistant to harsh natural effects such as severe climate, so it could thrive in a few years.
He learnt that Myanmar had grown jatropha curcas on hundreds of thousands of acres. The plants hardly died after being grown. The seeds’ oil contents were not the same, so it was needed to grow plants of quality species systematically, he said.
According to the findings from the research on jatropha curcas he did around the world, systematic growing and choosing quality species were important to get seeds with high oil content.
By-products from press cakes of jatropha curcas could be used for production of soap, cosmetic items, fertilizers and medicines, he said.
Germany was the pioneering country in doing research on using jatropha curcas oil as bio-diesel. The protein content of jatropha curcas was higher and the cost, less than soya bean. If it was detoxified, press cake could be used as feedstuff.
Doing research on some of by-products of jatropha curcas was nearing completion, and good results would come out soon, he said.
Now, Myanmar is gaining momentum in growing jatropha curcas. The chairman of Shan State (North) Peace and Development Council, social organizations and national entrepreneurs have successfully demonstrated the growing of jatropha curcas and the extracting of biodiesel from its seeds. In addition, 16-gallon ca-pacity jatropha curcas milling machines are available now at the price of 1 million kyats per unit. With the use of bio-diesel extracted from jatropha curcas seeds, measures are being taken to supply more electric power to rural areas.
As a national duty, Myanmar is growing jatropha curcas extensively to produce oilsubstitute fuel from it.

자트로파 성분및 용도

자트로파 성분및 용도

http://blog.daum.net/dreamannie/9409831

o 관엽식물

대극과 식물 자트로파는 다양한 속의 초본,관목,교목을 포함하여 주로 아프리카와 아메리카의 열대,아열대 지역에 분포한다. 자트로파 일부 종은 관엽식물로서 정원에 재배되고 있다. 그러나 Jatropha curcas는 노는 땅을 빠르고 아름답게 녹화하는데 이용될 수 있다. 또한 농촌과도 도시의 비어있는 땅에 심어 해로운 잡초를 억제할 수 있다.

o 울타리

Jatropha curcas는 3-4 미터로 자라는 큰 관목이다. 마을 주변에서 발견되는데 종자나 삽목으로 수비게 번식할 수 있기 때문에 농토의 생울타리로 일반적으로 재배된다. 이 나무는 빠르게 자라며, 염소나 소가 먹지 않는다. 이 나무는 원하는 길이로 잘라서 울타리로 심을 수 있는데 바람으로부터 지켜주는 보호막을 만들어 줄 수 있다. 또한 토양 침식을 방지하기 위하여 초지나 삼림 주위에 울타리로 심을 수 있다.

o 유료작물

Jatropha curcas 종자는 다음과 같은 화학적 성분을 가지고 있다. 수분 6.62; 단백질 18.2; 지방 38.0; 탄수화물 17.30; 섬유질 15.50; 회분 4.5%, 함유율은 종자에서 35-45%이며 심에서 50-60%이다. 오일은 21%의 포화지방산과 79%의 불포화지방산을 포함한다. 종자에는 유독성 및 변통성 화학성분이 있는데 이 때문에 사람이 먹지는 못한다. 기름은 종자를 박피한 후 압착 또는 용제로 추출할 수 있다.

o 산업원료

자트로파 기름은 매우 높은 비누화값을 가지고 있으며 여러 나라에서 비누 제조에 집중적으로 이용되고 있다. 현재는 Jatropha curcas 기름은 화장품 산업의 수요를 채우기 위하여 수입되고 있다. 중국에서는 자트로파 오일을 산화철과 섞은 후 끓여서 니스를 만들고 있다. 피마자 기름처럼 타기 때문에 시골에서는 등불로 이용된다. 영국에서는 양털 방적에 이용된다. 자트로파 기름을 짠 케이크의 단백질은 플라스틱과 합성 섬유 원료로 사용될 수도 있을 것이다. 자트로파 기름을 수압오일로 이용한다면 또한 유익할 것이다.

o 의료용 식물

자트로파의 유액은 Jatrophine이라는 알칼로이드를 포함하는데 이것은 함암성분이 있는 것으로 고려되고 있다. 자트로파 기름은 변통성분(추천량 0.3에서 0.6cc 또는 5-10ml)을 가지고 있다. 점도가 낮다는 점에서 이것은 피마자유와 다르다. 또한 피부병이나 류마티즘의 외용제로 이용된다. 유산을 촉진하는 성분이 있으며, 수종, 좌골신경통,마미에 효험이 있다. 자바에서는 머리털 성장 촉진제로 이용된다. 또한 가축의 염증에도 이용된다. 식물의 부드러운 가지는 이빨을 닦는데 이용된다. 즙액은 치통을 완화시키고 잇몸을 강화시킨다. 자바에서는 식물의 즙액이 하제와 지혈제로도 이용된다 잎은 피부를 붉게하고 젖 분비를 촉진하는 것으로 생각된다. 잎의 즙액은 치질의 외용제로 이용된다. 또한 아기를 혀가 타는데 이용되기도 한다. 가지의 숙액은 수렴성이 있어 상처와 종기를 치료하는데 이용된다. 수액을 benzyl benzoate와 혼합한 액은 옴,습진,피부염에 효과가 있다고 한다. 잎과 뿌리를 달여서 설사에 이용한다. 뿌리는 노란 기름을 함유하는데 강력한 구충작용(anthelmintic)이 있다는 보고가 있다. 뿌리 껍질은 종기를 치료하는 외용제로 이용한다. 콘칸에는 껍질을 아사페티다(asafetida)및 버터밀크와 문질러 반죽을 소화불량과 설사에 이용한다. 껍질을 달여 류머티즘과 나병에 이용한다. 트라반코르에서는 종자를 볶아 가루로 만든 후 당밀과 섞어 복통과 해독시 먹는다. 뿌리는 뱀에 물린데 해독제로 이용된다는 보고가 이싿.

o 염색원료

자트로파 껍질은 감청색 염료를 생산하는데 필리핀에서는 의복,네트,밧줄에 사용한다는 보고가 있다. 염료는 잎과 부르러운 줄기에서 추출할 수 있는데 누르스름한 시럽으로 농축하거나 건조시켜 검은 다갈색의 덩어리로 만들 수 있다. 염료는 무명에 여러 층의 무두질과 다갈색을 만들어 주는데 상당히 빠르다. 이 분야의 더 깊은 연구는 큰 기회를 열 수 있을 것이다.

o 유기질 비료

자트로파 깻묵은 질소,인산,칼리가 풍부하여 유기질 비료로 사용할 수 있다. 이것은 인도에서 비료로서 우분을 얻기 위하여 추가로 길러야 하는 가축을 줄여도 될 수 있다는 가능성을 시사한다. 부드러운 가지와 잎도 비료로 사용된다. 노는 땅에 자트로파 플랜테이션을 만든다면 자트로파 깻묵은 화학비료를 대체할 수 있을 것이다. 자트로파 잎은 풍부한 유기질을 제공하며 지렁이를 포함한 토양 미생물 활동을 증가시켜 생태학적 개선을 유도한다.

o 사료로서의 가능성

자바와 말레이시아에서느느 부드러운 잎을 요리하여 먹는다는 보고가 있다. 아쌈에서는 자트로파 잎을 야잠(tusser silkworm)에 먹인다. 깻묵은 단백질이 풍부하지만 독성물질이 있어서 가축사료로서는 적합하지 않다고 생각된다. 그러나 독성물질은 기름의 알칼리 용해성 부분에만 존재한다는 보고가 있다. 적절한 연구를 통해 비식용 깻묵을 단백질이 풍부한 가축 사료로 대량 전환시킬 가능성이 있다.

o 살출제로서의 가능성

브라질에서는 종자가 구충제(anthelmintic)로 간주된다. 가봉에서는 팜유와 함께 갈라서 쥐약으로 이용한다. 액상 잎추출물은 살출성분이 있다고 보고되었다. 가나에서는 잎이 집에서 침대의 벌레를 제거하기 위하여 훈증하는데 이용된다. 에테르 추출물은 Staphylococcus aureus와 Escherichia coli에 대한 항생작용을 보인다. 필리핀에서는 전체 식물의 즙액을 물고기 마취시키는데 이용한다.

o 새로운 에너지 작물

자트로파 기름은 환경적으로 안전하고 저렴하며 재생가능한 비전통적 에너지 원료로서 디젤,석유,LPG,석탄 및 목재 등에 대한 유망한 대체품이다. 이 비전통적 에너지 원료는 분산 방식으로 에너지를 만들어 막대한 외화를 절약하고 에너지의 지역적 불균형을 해소할 것이다. 이러한 이용을 생각한다면 대구모 생산에 무한한 가능성이 있을 것이다.

O 수익성 있는 농림업 작물

다양한 용도 때문에 자트로파 기름을 집중적으로 생산하는 것은 내수시장 및 해외시장에 무한한 잠재력이 있다. 따라서 수입대체로서 뿐만 아니라 외국에 화장품 산업이나 자동차 연로로 수출할 수 있는 무한한 잠재력이 있다. 관개를 하거나 하지 않는 단순하고 경제적인 자트로파 재배기술은 토지,노동력과 자본을 최적으로 활용할 수 있는 유망한 농림업 작물로 자리매김하게 한다. 자본투가가 적어도 되며, 회임기간이 짧고, 장기간 생산적이며, 농촌지역에서 무한한 고용 잠재력이 있다. 생산적인 자산가치가 충분하며 마을을 기반으로 한 산업을 진흥 시킨다. 분산방식으로 비전통적 에너지를 제공하며 무엇보다도 유휴지를 개발하는 잠재력이 있다. 고용을 창출하며 국가 수입과 방대한 유휴지를 개발하여 빠르게 녹화시키는 자본을 만들어내다. 이것은 현재의 요구사항이다. 이 모델은 아마도 협동조합식 농림언ㅂ의 수단을 통하여 비집중화된 마을 계획을 통한 사회경제적 변형의 과정을 이끌 것이다.

ABOUT JATROPHA BIO OIL

http://everplus.co.kr 참고 : 인도네시아 수마트라섬 자트로파 농장 분양 - 땅 매입투자->연차적 수익보장
수익원 : 1) Jatrohpha oil, 2)부산물 깻묵과 oil 처리시 발생하는 글리세린 및 향후 co2 판매


HS CODE : 비휘발성 오일 : 1515-90-9090



바이오디젤의 원료 자트로파 l 바이오디젤이 뭐야!!
조회 (265) / 추천 (1) / 스크랩 (1)
http://blog.korea.kr/trackback/40002017/40159409
2007.02.08 09:41:03
<바이오디젤의 원료 자트로파>
자트로파 오일을 에스테르화하여 만드는 바이오디젤의 생산비는 석유 디젤과 같거나 저렴하다. 보통 종자는 30% 정도의 기름을 함유하는데 추출율은 91-92%가 된다. 1킬로의 바이오디젤을 생산하려면 1.05킬로의 오일이 필요하다. 글리세린을 회수하여 판매하면 부가적인 소득이 된다. 글리세린 가격은 대량생산을 할 경우 가격이 낮아질 염려가 있으며 이것은 바이오디젤 생산가를 올린다. 그러나 새로운 용도개발은 새로운 수요를 만들어내 가격을 안정시킬 것이다. 원유가격이 상승함에 따라 바이오디젤은 경제적으로 타당성이 있는 전략적 대안으로 간주된다.
□ 자트로파는 어떤 나무인가?
자트로파(Jatropha curcas)는 대극과에 속하며 고무나무나 피마자 등의 주요 재배작물과도 가까운 연관관계를 가지고 있다.
이 식물은 남미와 아프리카가 원산이라고 생각되는데 포르투갈인들에 의해 전세계로 전파되었다. 아랍인들은 이 식물을 의료 목적으로 오랫동안 사용해 왔다. 오늘날 이 식물은 전세계 대부분의 아열대 및 열대지방에서 발견된다. 인류에 대한 중요성과 다양한 가능성 때문에 이미 200 가지가 넘는 이름이 존재한다. 식물학자 Carl von Linne가 이 식물을 1753년에 최초로 분류할 때, 그는 식물학적 이름을 “Jatropha curcas”라고 명명했다. 이것은 그리스어로 의사를 뜻하는 ”Jatros"와 영양을 뜻하는 “trophe"에서 유래한다. 린네까지도 이 식물의 의학적 효과를 알았던 것이다.
인도에서 Jatropha curcas는 모든 지역에서 발견되며 일반적으로 농지를 가축으로부터 보호하기 위하여 울타리로 재배된다. 이 식물은 소나 염소가 먹지 않기 때문이다.
자트로파는 작고 상록성이며, 거의 털이 없는 연한 목질의 관목이다. 3 내지 4미터까지 자라며 엽병이 길고, 전연(全緣)이며, 3-5 돌출부가 있거나 각이 지거나 공모양의 심장형 잎이 있다. 10에서 15cm로 긴 취산화서가 각 가지의 끝에 있다. 직경 2.5에서 4cm의 삭과(?果)를 맺는다. 원산지는 아메리카이며 대부분의 열대지방에서 울타리로 재배되거나 야생화되었다.
자트로파는 역질, 사질 및 염분 토양을 가리지 않고 어디에서나 자란다. 기후와 토양에 관해서는 특별한 요구조건이 없다. 인산 결핍을 해결하기 위해서 뿌리와 곰팡이의 공생을 이용할 수 있다. 심지어 암석이 갈라진 틈에서도 자랄 수 있다. 겨울 동안에는 잎이 떨어져 나무 기부에 멀칭이 된다. 나뭇잎이 떨어져 만들어진 유기물은 뿌리 주변 토양에서 지렁이 활동을 촉진시키는 것이 발견되었는데 이는 토양 미생물상과 비옥도 증진의 중요한 지표이다.
기후에 관해서 중요한 점은 자트로파는 아열대 및 열대지방에서 발견되며 고온을 좋아한다는 점이다. 물론 저온에서도 잘 견디며 약한 서리에도 견딜 수 있다. 수분 요구도는 극단적으로 낮으며 장기간 가물 때에는 잎을 떨어뜨려 증산량을 줄이고 나무 주위에 유기물 멀칭을 만들어 표면 증산에 의한 수분 손실을 줄임으로써 견딜 수 있다.
□ 미국과 유럽에서의 바이오디젤의 경제성
미국에서는 주로 대두유를 이용하여 바이오디젤을 생산한다. 100% 바이오디젤의 코스트는 구입양과 배달가격에 따라 다르지만 갤런당 1.25-2.25달러가 되며 저유황 경유와 경쟁한다. 그러나 그것은 일반 디젤보다 코스트가 높아지는데 BD20의 경우 갤런당 일반 디젤에 비해 13-22센트가 높아진다. 1갤런의 바이오디젤을 생산하려면 파운드당 약 20센트 대두유가 약 7.3파운드 필요하다. 그러므로 원료가격은 대두유 갤런당 적어도 1.5달러가 된다. 유채 프로그램에 의하면 기름이 파운드당 약 10센트가 되며 유채 바이오디젤의 생산가는 갤런당 약 1달러가 된다. 유채는 부가가치가 낮은 제품인데 포화지방산을 90%나 함유하고 있어 바이오디젤로서는 완벽하다. 질산화물의 저온유동성도 문제가 되지 않는다. 유럽에서는 대부분 유채를 이용하여 바이오디젤을 생산하고 있는데 농업 보조금 때문에 현실성이 있다. 만약 WTO 농업 협상에서 농업부분 보조금을 삭감할 경우 유채 바이오디젤의 경제성은 의문시된다.
* 1lbs(파운드) = 0.45kg, 1gal(갤런) = 3.79ℓ
□ 말레이지아 바이오디젤의 경제성
말레이시아와 인도네시아는 세계 팜유 생산의 80% 이상을 점유하고 있다. 원래 팜유는 아프리카 원산의 식물인데 이들 나라가 도입하여 정책적으로 키워온 전략산업이다. 세계의 식용유에서 팜유는 중요한 위치를 차지하고 있는데 최근 말레이시아에서는 팜유를 이용하여 바이오디젤을 생산하려는 시도를 적극적으로 추진하고 있다. 최근 한국 정부도 말레이시아와 양해각서를 체결하여 팜유를 도입하려는 준비를 하고 있다. 현재까지 팜유가 바이오디젤 원료로서는 경제성이 있다고 평가되는데, 팜유의 경우 식용유 시장과의 경쟁이 문제시된다. 즉 중국와 인도가 경제적으로 도약하면서 대량으로 팜유를 소비하고 있는데 이는 결국 팜유의 국제 가격에 영향을 미치게 되고 바이오디젤 원료로서의 경제성에도 영향을 미칠 수 있다.
□ 자트로파 바이오디젤의 경제성
자트로파 오일을 에스테르화하여 생산하는 바이오디젤은 석유디젤과 생산비가 같거나 저렴해 질 수 있다. 자트로파 바이오디젤의 부산물은 깻묵과 글리세린인데 충분한 시장성이 있다. 깻묵은 아주 좋은 유기질비료로 영양이 풍부하다. 그것은 또 바이오가스를 생산할 수 있는데 가스는 요리에 사용할 수 있고 잔재물은 다시 퇴비로 사용할 수 있다. 그러므로 깻묵은 좋은 가격을 받을 수 있다. 글리세린은 에스테르화 과정의 부산물로 생산된다. 이 부산물은 바이오디젤의 코스트를 석유디젤과 비슷한 수준으로 떨어뜨릴 것이다. 바이오디젤의 가격 구성요인은 종자가격, 종자수집 및 착유, 에스테르화, 종자 및 기름의 운송비 등이다. 앞에서 말한 바와 같이 깻묵과 글리세린 판매를 통하여 가격을 낮출 수 있으며 대규모 플랜테이션을 통하여 생산방식을 효율화할 경우 팜유보다 더 저렴한 바이오디젤의 원료가 될 수 있다. 또한 자트로파 오일은 비식용이기 때문에 식용유를 이용한 바이오디젤에 비해 가격 변동을 염려하지 않아도 되는 장점이 있다. 앞으로 바이오디젤의 원료시장에서 자트로파 오일은 가장 유망한 대안이 될 것으로 예상되고 있다.
□ 자트로파를 심는 나라들
현재 자트로파는 개발도상국을 대상으로 식재되고 있다. 영국의 biodiesel 회사인 D1 Oils plc. 는 2002년 설립 이후로 아프리카와 아시아 지역, 특히 빈곤문제를 안고 있는 개발도상국을 대상으로 엄청난 땅에 자트로파를 식재하고 있다. 특히 인도지방에서의 자트로파 식재는 앞으로 세계 바이오에너지 산업이 인도를 중심으로 이루어질 것임을 가히 어렵지 않게 추정할 수 있다.
1) Africa
? Burkina Faso : 우선 1만ha 재배지를 만들고 점차 99ha 자트로파 농장을 만들 계획
? Ghana
? Lesotho : 앞으로 4년동안 1만ha에 자트로파를 식재할 계획(올해는 100ha)
? Madagascar : 앞으로 5년안에 5개지방에 대농장을 구성, 약 5,000t 오일생산 계획
? Malawi : 10년안에 35,000ha 계획(올해는 5,000ha)
? Swaziland : 올해 5,000ha 식재
? Zambia : 올해 10,000ha 계획
2) Asia
? India : 5년 안에 500만ha 계획(올해는 10만ha), 정부에서 3억달러 지원 계획, 현재 5%(250만톤)에서 앞으로 20% 혼합물(1600만톤) 계획, 앞으로 6000만ha 계획(인도땅 20%)
? Philippines : 올해 민다나오에 5ha 모델 식재, Atlas에 3,000ha 계획, 퀘손지역에는 10,000ha 계획
? Thailand : 2012년까지 바이오디젤 10%, 영국계 D1과 자트로파를 식재할 계획
? China : 청도, 시천 지역에 200만ha 식재 계획, 50만톤 바이오디젤 생산할 예정
? Saudi Arabia : 10만ha 이상 식재할 계획
<참고>
[자트로파 재배 농장 및 열매 사진]
자트로파 재배농장



자트로파 열매

자트로파 씨앗
※ 자트로파 3~4kg으로 BD 1ℓ 제조 가능
<해외화제> 인도 `디젤유 생산木' 대량재배 방침
[연합뉴스 2004-12-24 16:05]
(뉴델리=연합뉴스) 정규득 특파원 = 인도 정부는 디젤유를 생산하는 `자트로파'와 `카누가' 나무의 대량재배에 나설 방침이라고 24일 밝혔다.
이들 나무는 식용은 안되지만 차량의 디젤유를 대체할 수 있는 기름을 생산, 인도의 수입원유 의존도를 낮추는데 기여할 것으로 기대되는 식물.
칸티 랄 부리아 농엄담당 국무장관은 하원에 제출한 서면 답변에서 "현재 전국적으로 각각 1천563㏊와 1천47㏊의 부지에 자트로파와 카누가 종묘장이 설치돼 있다"며 "자트로파는 1천147㏊에서 이미 대량 재배되고 있고 카누가 집단재배를 위해 676㏊의 농장부지를 마련한 상태"라고 설명했다.
그는 "자트로파는 농장으로 이식한 지 3년째, 카누가는 6년째부터 경제적 이득이 발생한다"면서 "앞으로 재배량을 계속 늘릴 계획"이라고 덧붙였다.
IANS통신은 인도가 국내 소비의 70%를 수입원유에 의존하고 있는 가운데 최근 대체 에너지의 개발을 위한 다각적인 노력을 기울이고 있다고 밝혔다.
정부는 이 연장선에서 바이오 연료를 디젤유와 섞어 열차를 비롯한 다양한 차량에서 시험한 결과 만족할 만한 결과를 얻었다고 IANS는 덧붙였다.



제목 : 청정 연료 생산 작물에 투자하는 석유 회사
날짜 : 2005-04-19
글쓴이
영국대사관
조회수
791

영국의 한 석유회사가 대대적 혁신을 통해 최첨단 청정 연료 생산을 추진하고 있다.
런던의 D1 오일스사(社)는 세계의 몇몇 빈국들의 사용되지 않는 황무지에 생물연료를 다량 생산할 수 있는 작물을 광범위하게 재배한 후 정제하는 독특한 이동식 장비를 개발했다.
이 지속가능하고 친환경적인 제품은 휘발유와 디젤유를 대체할 비용 효과적인 고급 제품이라고 생각되고 있다. 땅에서 수확되는 태양에너지의 한 형태로서 휘발유와 석유를 대체할 상업적 바이오디젤유들은 지난 몇 년 동안 생산되어 오긴 했지만 수송 문제로 인한 비용과 문제점들이 주요 장애물로 작용해 왔다.
자트로파 씨의 에너지의 40% 이상이 디젤유와 동일한 에너지가(價)를 가진 기름으로 추출될 수가 있고 광물질인 디젤유와 혼합될 수가 있다. 석유 가격이 급등하고 기후 변화에 대한 우려가 팽배하고 있는 이 시점에 D1 오일스는 현재 다른 경쟁업체들보다 앞서 완벽하게 친환경적인 연료를 제공할 수 있는 절호의 기회를 맞이했다.
각국 정부들이 탄소 배출량을 감소시키기 위한 규제를 도입하고 전통적인 연료에 대한 의존도를 감소시키려고 노력하고 있으므로 바이오디젤 시장은 급속히 확장될 것으로 기대되고 있다. D1은, 자연의 경이로운 현상들 중 하나인 자트로파 씨로부터 바이오디젤을 생산한다면 유럽 국가들에게도 도움이 될 것이라고 믿고 있다.
유럽연합(EU)이 내린 생물연료 관련 명령에 따르면 EU에서 판매되는 연료들 중 생물연료의 최저 비율은 2005년까지는 2%, 2010년까지는 5.75%, 2020년까지는 20%가 되어야 한다. 바이오디젤의 수요는 2010년까지는 105억 리터에 이를 것으로 전망되고 있다.
이 회사는 유럽을 벗어나 안드라 프라데시주(州) 등 인도의 8개 주에 20여개의 정유소를 설립하려고 계획하고 있다. 안드라 프라데시 주정부가 적극적인 태도를 보이고 있기 때문에 연방 정부도 이곳에 생물연료 재배 농장들을 조성하도록 권장하려는 계획을 갖고 있다.
한 예를 보면 D1은 인도의 모한 양조회사와 D1 모한 바이오 오일스라는 합작 법인을 설립하고 이 법인을 통해 이 지역의 장래의 생물연료 생산 사업을 운영∙관리하기로 계약을 체결한 바 있다.
이 회사는 자트로파 재배 농부들이 스스로 바이오디젤을 생산할 수 있도록 씨앗을 구매하고 재배를 지원하며 정제 기술을 제공하는 등 자트로파의 재배를 촉진하기 위해 전력을 기울이고 있다. 요약하자면 이 회사는 바이오디젤의 생산 공정을 처음부터 끝까지 관리하기를 바라고 있는 것이다.
D1 오일스는 현재 에너지 문제의 새로운 해결책을 모색하고 나아가 재생가능하고 지속가능한 농림업을 통해 개발도상국들의 지역사회에 바이오디젤 생산 능력을 부여하기 위해 전력을 기울이고 있다.
자트로파가 미래의 연료가 될 것이므로 D1은 세계 곳곳의 여러 지역들에 정유소를 설치하기를 희망하고 있다. 중국과 아시아태평양 지역에 새로운 기반들이 생겨나고 있으므로 미래지향적 사고를 가진 이 회사와 이 회사가 제시한 화석연료의 대안은 이미 국제적으로 상당한 영향을 준 것으로 보인다.
이 기사는 UK Trade & Investment (영국 무역 투자청)의 의뢰에 따라 작성된 것입니다. Contact: D1 OilsPall Mall, St James, London, United Kingdom, SW1Y 5HP Phone: +44 20 7321 3885 Fax: +44 20 7321 3886 Web: www.d1plc.com
사진설명: 바이오디젤 정제 장비 - 영국의 D1 오일스사(社)는 세계의 몇몇 빈국들에서 생물연료를 다량 생산할 수 있는 작물을 정제하는 독특한 이동식 장비를 개발했다. 자트로파가 미래의 한 연료의 토대가 될 것이 확실하므로 D1은 세계 곳곳에 정제소들을 설치하기를 희망하고 있다.





[스크랩] 바이오 디젤이 SSF시를 가동시킨다 2007/04/24 21:53
추천 0 스크랩 0
원문출처 : 동서남북의 자원과 환경
Running a city on bio-fuel



바이오 디젤의 사용을 도입하면서 South San Francisco의 관용차량들은 점짐적으로 대기오염물질의 배출을
줄여나가고 있고, 또한 미래에 더욱 많은 양의 바이오 디젤을 연료로 사용할 것을 계획하고 있다.

자신이 직접 만든 바이오 디젤을 자신의 디젤자동차에 연료로 사용해온 South San Francisco시의 소방관 John Grimaldi 이 소방서장에게 바이오 디젤에 대한 아이디어를 제안하자 South San Francisco시는 환경 친화적인
바이오 디젤에 대하여 주목하기 시작했다. Public Works Supervisor인 Mike Aquilina 와의 여러차례 면담과
수많은 조사를 실시한 이후, South San Francisco시는 1년전 부터 이 아이디어를 테스트하기 시작했다.

이제 바이오 디젤은 Station 61의 모든 응급차량들에 연료로 사용되고 있다.

"처음에 나는 바이오 디젤의 사용을 꺼렸다. 나는 바이오 디젤의 장점과 또한 바이오 디젤이 자동차내 연료주입
장치와 연료공급 호스에 손상을 초래한다는 단점에 대해 들었다."라고 Aquilina는 말했다.

바이오 디젤과 일반 디젤유를 혼합한 연료를 사용하면, 대기오염물질의 대기중 배출을 약 50%가량 줄일 수 있다.
순수 바이오 디젤과는 달리 이 혼합유를 사용하면 기존 디젤자동차의 내부구조를 변경할 필요가 없다.
관용 디젤자동차 1대를 사용해 20%의 바이오 디젤과 80%의 일반 디젤유를 혼합한 B20을 연료로 사용하는 테스트가 시작되었다.
처음에는 완벽한 B20연료를 만들기 위해 시당국이 직접 순수 바이오 디젤을 일반 디젤유에 혼합했다.
매일의 주행거리가 일정한 senior van이 주행성능 테스트를 위해 선정되었다. 만일 주행시험 중에 발생할지도
모르는 문제를 우려하여 응급차량을 성능테스트에 동원하지는 않았다.

약 1년간에 걸친 주행성능시험 기간동안 아무런 문제도 발생하지 않자, 한단계 더 나아가 소방차와 응급구호차량 그리고 새로운 응급지휘차량들에게도 B20 연료를 사용했다. B20 혼합유는 Olympic Oil로 부터 구입하였으며, 3/21일 부터는 긴급차량들에도 연료로 사용하기 시작했다.
매 1,000갤런의 B20연료 구입시마다 시당국은 약 $30달러를 절약했다. 바이오 디젤의 생산량이 증가하고 있어
미래에는 더욱 많은 금액이 절약될 것으로 시당국은 기대하고 있다.

하지만, Grimaldi와 Aquilina에게는 돈이 문제가 아니다.
"바이오 디젤이 연료로 부터 파생되는 모든 문제들에 대한 해답은 아니다."라고 Grimaldi는 말했다.
"이는 South San Francisco시민들을 위해 보다 나은 미래를 만들고자 하는 시도이다."

이것이 공해물질의 배출이 적은 청정자동차를 사용하려는 시당국의 최초시도는 아니다.
약 8-10년 전에 시당국은 주차지도차량으로 2대의 전기자동차를 도입했다.
"당시 그 전기자동차들은 매일 견인되어 와야만 했다, 전기자동차를 운행하는데는 수 많은 문제점들이 발생했다."
라고 Aquilina는 말했다. 1980년에는 시당국은 연소시 대기오염 물질의 배출이 적은 프로판가스를 자동차의 연료로 사용했지만 성공적이지 못했다.
바이오 디젤의 사용을 시 전역으로 확대하려는 계획은 점진적으로 진행될 것이다.
디젤엔진 자동차들 이외의 자동차들이 수명을 다하면 시당국은 하이브리드 자동차로 교체할 것을 고려하고 있다.

어느 시간대에서건 평균 220대의 시당국 소유 자동차들이 항상 시가지를 주행중에 있으며 이들 중 많은 수가
디젤자동차들이다. 하지만 자동차들 이외에도 펌프와 발전기등 많은 기계장비들이 디젤유를 연료로 사용한다.
바이오 디젤은 이들 시당국이 소유한 기계장비들에도 연료로 사용될 수 있다.